Monster Redshift Surveys through Slitless Imaging

Karl Glazebrook,

Ivan Baldry, Stephan McCandliss, Jeff Kruk, Warren Moos

JOHNS HOPKINS U N I V E R S I T Y

The idea

- Low NIR 1-2µm background in space
- High line luminosities z>1 objects

- Efficient spectroscopy/redshifts with small telescope and slitless grism
- WF 1m/0.5° FOV telescope ~ 10⁸ objects 1<z<2 over 10⁴ deg²

Science

- Dark energy w(z) via baryon P(k) oscillations
- z>1 galaxy clusters 3D detection
- Evolution of Galaxy clustering/galaxy evolution
- Luminosity function, metallicity and environment
- Depth information for lensing studies
- Direct WF Lyα searches 7<z<15 DARK AGES</p>

Slitless primer

- Grism disperses full image
- Object forms it's own slit
- Background (per pixel) UNCHANGED defined by blocking filter (e.g. J, H)
- \circ S/N (un-resolved emission line) indpt of R= $\lambda/\Delta\lambda$

Why it's Easy: I

Why it's Easy: II

GOODS: first higher-z SN Ia, Aphrodite

Aphrodite (z=1.3)

ACS grism spectrum
Highest z spectrum of a SN

NICMOS slitless surveys

Hopkins et al. (2000)

McCarthy et al. (1999)

≥70% are genuine Hα (confirmed Keck [OII] det.)

Strawman Mission

"Baryon Oscillation Probe"

- 1m Telescope
- 25% throughput 1-2μm
- 0.5° diameter FOV
- 1 arcsec resolution
 (4K² pixel requirement)
- size/mass/cost ≈ MIDEX

Number counts

Exposure times

Toy Simulation

Issues -I

Issues - II

- Resolution. R=700, Δz =0.004 (for 1 arcsec object) easy with grism (or objective prism?)
- Spectrum overlap: of order 5-10%.
 Need multiple roll angles
- Lyα (UV-optical) vs Hα (NIR)
 Exposures 10-20× longer
- Number of filters.2 is probably best for shallow survey

Redshift Survey Power 0.5<z<2

Im telescope, 0.5° FOV, 2 filters "Baryon Oscillation Probe"
 2000 deg² per year
 10⁷ objects per year

 2m telescope, 0.11 deg² FOV, 2 filters ("SNAP extra")
 3000 deg² per year

Example: Baryon wiggles P(k)

Baryon wiggles w(z)

Riess et al 2004

Take home messages

- Simple, slitless grism surveys from space are surprisingly efficient redshift machines
- Emission line $H\alpha$ redshifts 0.5 < z < 2 $1-2\mu m$ $10,000 deg^2$ 1 < z < 2 in 3-5 years with 1m telescope
- Any WF imaging mission (esp. dark energy!) should consider a grism component
- Removes the follow-up bugbear get 3rd dimension from same hardware
- $(\Delta w_0, \Delta w_1)$ from Baryon Wiggles \leq SNe in same scope of mission.